Трансформация сектора удобрений для защиты здоровья человека и планеты (обзор)

Вера Фроловна Козловская

Аннотация


Инновационные удобрения и технологии их применения (ИУТП) необходимы, чтобы решать сложные и взаимосвязанные продовольственные, сельскохозяйственные и экологические проблемы, стоящие перед человечеством и планетой. ИУТП определяется как набор удобрений и технологий, который разработан с учетом физиологических потребностей растения (такие как поглощение, перераспределение и использование питательных веществ) в качестве исходной точки процесса разработки удобрений. Этот подход направлен на своевременную и целенаправленную доставку питательных веществ в сбалансированных количествах. Предполагается, что названный подход может привести к повышению и пластичности урожайности, улучшению качества питания, снижению выбросов парниковых газов и потерь от выщелачивания. Основной проблемой для оптимального использования ИУТП является трансформация удобрений посредством вмешательства государственной политики, социальных мер и значительных инвестиций в государственные и частные исследования и разработки.

Ключевые слова


сектор удобрений; питание человека; инновационные удобрения; нанотехнологии; здоровье растений

Полный текст:

PDF

Литература


Rockström J., Steffen W., Noone K., et al. Planetary boundaries: Exploring the safe operating space for humanity / Ecol. Soc. 2009. V. 14. P. 1 – 33.

Willett W., Rockström J., Loken B., et al. Food in the Anthropocene: The EAT-Lancet Commission on healthy diets from sustainable food systems / Lancet. 2019. V. 393. P. 447 – 492.

Erisman J. W., Sutto M. A., Galloway J., et al. How a century of ammonia synthesis has changed the world / Nature Geosci. 2008. V. 1. P. 636 – 639.

Gibbs H. K., Ruesch A. S., Achard F., et al. Tropical forests were the primary sources of new agricultural land in the 1980s and 1990s / Proc. Natl. Acad. Sci. USA. 2010. V. 107. P. 16732 – 16737.

Conijn J. G., Bindraban P. S., Schröder J. J., and Jongschaap R. Can our food system meet food demand within planetary boundaries? / Agric. Ecosyst. Environ. 2018. V. 251. P. 244 – 256.

Bouwman A. F., Beusen A. H. W., Lassaletta L., et al. Lessons from temporal and spatial patterns in global use of N and P fertilizer on cropland / Sci. Rep. 2017. V. 7. P. 40366.

Zhang X., Davidson E. A., Mauzerall D. L., et al. Managing nitrogen for sustainable development / Nature. 2015. V. 528. P. 51 – 59.

Li T., Zhang W., Yin J., et al. Enhanced-efficiency fertilizers are not a panacea for resolving the nitrogen problem / Global Change Biol. 2018. V. 24. P. e511-e521.

Timilsena Y. P. P., Adhikari R., Casey P., et al. Enhanced efficiency fertilisers: A review of formulation and nutrient release patterns / J. Sci. Food Agric. 2015. V. 95 P. 1131 1142.

Woodward E. E., Hladik M. L., and Kolpin D. W. Nitrapyrin in streams: The first study documenting off-field transport of a nitrogen stabilizer compound / Environ. Sci. Technol. Lett. 2016. V. 3. P. 387 – 392.

Research and Markets / Global specialty fertilizers market analysis and trends — Industry forecast to 2025. 2017. P. 112 – 135.

Jones D. L., Cross P., Withers P. J. A., et al. Review: Nutrient stripping: The global disparity between food security and soil nutrient stocks / J. Appl. Ecol. 2013. V. 50. P. 851 – 862.

Shukla A. K., Babu P. S., Tiwari P. K., et al. Mapping and frequency distribution of current micronutrient deficiencies in soils in Telangana for their precise management / Indian J. Fertil. 2015. V. 11. P. 33 – 43.

Bänziger M. and Long J. The potential for increasing the iron and zinc density of maize through plant-breeding / Food Nutr. Bull. 2000. V. 21. P. 397 – 400.

Monasterio I. and Graham R. D. Breeding for trace mineral in wheat / Food Nutr. Bull. 2000. V. 21. P. 392 – 396.

Fan M.-S., Zhao F.-J., Fairweather-Tait S. J., et al. Evidence of decreasing mineral density in wheat grain over the last 160 years / J. Trace Elem. Med. Biol. 2008. V. 22 P. 315 – 324.

Garvin D. F., Welch R. M., Finley J. W. Historical shifts in the seed mineral micronutrient concentration of US hard red winter wheat germplasm / J. Sci. Food Agric. 2006. V. 86. P. 2213 – 2220.

Bindraban P. S., Dimkpa C., Nagarajan L., et al. Revisiting fertilisers and fertilisation strategies for improved nutrient uptake by plants / Biol. Fertility Soils. 2015. V. 51. P. 897 – 911.

Fuglie K. O., Heisey P. W., King J. L., et al. Research investments and market structure in the food processing, agricultural input, and biofuel industries worldwide / SSRN Electron. J. 2011. https://www.ers.usda.gov/webdocs/publications/ 44951/11777_err130_1_.pdf?v=0

Hernandez M. A., Torero M. Market concentration and pricing behavior in the fertilizer industry: A global approach / Agric. Econ. 2013. V. 44. P. 723 – 734.

Zhang Y., Zhou Y., Shao Q., et al. Diffuse nutrient losses and the impact factors determining their regional differences in four catchments from North to South China / J. Hydrol. 2016. V. 543. P. 577 – 594.

Rietra R. P. J. J., Heinen M., Dimkpa C. O., Bindraban P. S. Effects of nutrient antagonism and synergism on yield and fertilizer use efficiency / Commun. Soil Sci. Plant Analysis. 2017. V. 48. P. 1895 – 1920.

Kah M., Kookana R. S., Gogos A., Bucheli T. D. A. Critical evaluation of nanopesticides and nanofertilizers against their conventional analogues / Nat. Nanotechnol. 2018. V. 13. P. 677 – 684.

Sharma S., Malhotra H., Borah P., et al. Foliar application of organic and inorganic iron formulation induces differential detoxification response to improve growth and biofortification in soybean / Plant Physiol. Rep. 2019. V. 24. P. 119 – 128.

Sharma S., Chandra S., Kumar A., et al. Foliar application of iron fortified bacterio siderophore improves growth and grain Fe concentration in wheat and soybean / Indian J. Microbiol. 2019. V. 59. P. 344 – 350.

Monreal C. M., DeRosa M., Mallubhotla S. C., et al. Nanotechnologies for increasing the crop use efficiency of fertilizer-micronutrients / Biol. Fertility Soils. 2015. V. 52. P. 423 – 437.

Cakmak I. Enrichment of cereal grains with zinc: Agronomic or genetic biofortification? / Plant Soil. 2008. V. 302. P. 1 – 17.

Chin A., Schmid S., Buckley S., et al. Sorbents can tailor nitrogen release from organic wastes to match the uptake capacity of crops / Sci. Total Environ. 2018. V. 645. P. 1474 – 1483.

Abbott L. K., Macdonald L. M., Wong M. T. F., et al. Potential roles of biological amendments for profitable grain production — A review / Agric., Ecosyst. Environ. 2018. V. 256. P. 34 – 50.

Eurola M., Ekholm P., Ylinen M., et al. Selenium in finish foods after beginning the use of selenate supplemented fertilizers / J. Sci. Food Agric. 1991. V. 56. P. 57 – 70.

Noack S. R., McBeath T. M., McLaughlin M. J. Potential for foliar phosphorus fertilisation of dryland cereal crops: A review / Crop Pasture Sci. 2010. V. 61. P. 659 – 669.

Dimkpa C., Bindraban P. Nanofertilizers: New products for the industry? / J. Agric. Food Chem. 2018. V. 66. P. 6462 – 6473.

Santos G. A., Korndorfer G. H., Pereira H. S., Paye W. Addition of micronutrients to NPK formulation and initial development of maize plants / Biosci. J. 2018. V. 34. P. 927 – 936.

Khariri R. B. A., Yusop M. K., Musa M. H., Hussin A. Laboratory evaluation of metal elements urease inhibitor and DMPP nitrification inhibitor on nitrogenous gas losses in selected rice soils / Water Air Soil Poll. 2016. V. 227. P. 232.

Jadon P., Selladurai R., Yadav S. S., et al. Volatilization and leaching losses of nitrogen from different coated urea fertilizers / J. Soil Sci. Plant Nutr. 2018. V. 18. P. 1036 – 1047.

Dimkpa C. O., Singh U., Bindraban P. S., et al. Addition-omission of zinc, copper, and boron nano and bulk particles demonstrate element and size-specific response of soybean to micronutrients exposure / Sci. Total Environ. 2019. V. 665. P. 606 – 616.

Dimkpa C. O., Singh U., Bindraban P. S., et al. Zinc oxide nanoparticles alleviate drought-induced alterations in sorghum performance, nutrient acquisition, and grain fortification / Sci. Total Environ. 2019. V. 688. P. 926 – 934.

Chaperon S., Sauvé S. Toxicity of metals (Ag, Cu, Hg, Zn) to urease and dehydrogenase activities in soil / Soil Biol. Biochem. 2007. V. 39. P. 2329 – 2338.

Das C. K., Jangir H., Kumar J., et al. Nano-pyrite seed dressing: A sustainable design for NPK equivalent rice production / Nanotechnol. Environ. Engin. 2018. V. 3. P. 14.

Bindraban P. S., Dimkpa C., Angle S., Rabbinge R. Unlocking the multiple public good services from balanced fertilizers / Food Security. 2018. V. 10. P. 273 – 285.

Zhang W., Liu D., Li C., et al. Accumulation, partitioning, and bioavailability of micronutrients in summer maize as affected by phosphorus supply / Eur. J. Agron. 2017. V. 86. P. 48 – 59.

Zhang W., Liu D., Liu Y., et al. Overuse of phosphorus fertilizer reduces the grain and flour protein contents and zinc bioavailability of winter wheat (Triticum aestivum L.) / J. Agric. Food Chem. 2016. V. 65. P. 1473 – 1482.

Gibson R. S., Bailey K. B., Gibbs M., Ferguson E. L. A review of phytate, iron, zinc, and calcium concentrations in plant-based complementary foods used in low-income countries and implications for bioavailability / Food Nutr. Bull. 2010. V. 31. Suppl. 2. P. 134 – 146.

Almeelbi T., Bezbaruah A. Aqueous phosphate removal using nanoscale zero-valent iron / J. Nanopart. Res. 2012. V. 14. P. 7.

Goldstein A. Strategies for the development of environmentally friendly phosphate fertilizers based on gram-negative phosphate solubilizing bacteria / VFRC Report 2014/5. Virtual Fertilizer Research Center. — Washington, D.C., 2014. P. 12 – 35.

Bashan Y., Kamnev A. A., de-Bashan L. E. Tricalcium phosphate is inappropriate as a universal selection factor for isolating and testing phosphate-solubilizing bacteria that enhance plant growth: A proposal for an alternative procedure / Biol. Fertility Soils. 2013. V. 49. P. 465 – 479.

Bindraban P. S., Dimkpa C. O., Pandey R. Exploring phosphorus fertilizers and fertilization strategies for improved human and environmental health / Biol. Fertility Soils. 2020. V. 56. P. 299 – 317.

Bindraban P. S., Dimkpa C., Angle S., Rabbinge R. Unlocking the multiple public good services from balanced fertilizers / Food Security. 2018. V. 10. P. 273 – 285.

Jamil M., Kanampiu F. K., Karaya H., et al. Striga hermonthica parasitism in maize in response to N and P fertilizers / Field Crops Res. 2012. V. 134. P. 1 – 10.

Adisa I. O., Pullagurala V. L. R., Peralta-Videa J. R., et al. Recent advances in nano-enabled fertilizers and pesticides: A critical review of mechanisms of action / Environ. Sci. Nano. 2019. V. 6. P. 2002 – 2030.

Servin A., Elmer W., Mukherjee A., et al. A review of the use of engineered nanomaterials to suppress plant diseases and enhance crop yield / J. Nanopart. Res. 2015. V. 17. P. 91 – 112.

Raliya R., Tarafdar J. C., Biswas P. Enhancing the mobilization of native phosphorus in mung bean rhizosphere using ZnO nanoparticles synthesized by fungi / J. Agric. Food Chem. 2016. V. 64. P. 3111 – 3118.

Ginzberg I., Minz D., Faingold I., et al. Calcium mitigated potato skin physiological disorder / Am. J. Potato Res. 2012. V. 89. P. 351 – 362.

Zingore S., Manyame C., Nyamugafata P., Giller K. E. Longterm changes in organic matter of woodland soils cleared for arable cropping in Zimbabwe / Eur. J. Soil Sci. 2005. V. 56. P. 727 – 736.

Angle S. J., Singh U., Dimkpa C. O., et al. Role of fertilizers for climate-resilient agriculture / Proc. Int. Fertiliser Soc. Lond. 2017. V. 802. P. 44.

Chander G., Wani S. P., Sahrawat K. L., Rajesh C. Enhanced nutrient and rainwater use efficiency in maize and soybean with secondary and micronutrient amendments in the rainfed semi-arid tropics / Arch. Agron. Soil Sci. 2015. V. 61. P. 285 – 298.

Niang A., Becker M., Ewert F., et al. Variability and determinants of yields in rice production systems of West Africa / Field Crops Res. 2017. V. 207. P. 1 – 12.

Saltzman A., Birol E., Oparinde A., et al. Availability, production, and consumption of crops biofortified by plant breeding: Current evidence and future potential / Ann. NY Acad. Sci. 2017. V. 1390. P. 104 – 114.

Elmer W., De La Torre-Roche R., Pagano L., et al. Effect of metalloid and metallic oxide nanoparticles on Fusarium wilt of watermelon / Plant Disease. 2018. V. 102. P. 1394 – 1401.

Elmer W. H., White J. C. The use of metallic oxide nanoparticles to enhance growth of tomatoes and eggplants in disease infested soil or soilless medium / Environ. Sci. Nano. 2016. V. 3. P. 1072 – 1079.

Kihara J., Sileshi G. W., Nziguheba G., et al. Application of secondary nutrients and micronutrients increases crop yields in sub-Saharan Africa / Agron. Sustain. Develop. 2017. V. 37. P. 25.

Joy E. J. M., Ander E. L., Young S. D., et al. Dietary mineral supplies in Africa / Physiol. Plantarum. 2014. V. 151. P. 208 – 229.

White P. J., Broadley M. R. Biofortification of crops with seven mineral elements often lacking in human diets-iron, zinc, copper, calcium, magnesium, selenium and iodine / New Phytologist. 2009. V. 182. P. 49 – 84.

Geels F. W. Technological transitions as evolutionary reconfiguration processes: A multi-level perspective and a case-study / Res. Policy. 2002. V. 31. P. 1257 – 1274.

Barzman M., Dachbrodt-Saaydeh S. Comparative analysis of pesticide action plans in five European countries / Pest Manag. Sci. 2011. V. 67. P. 1481 – 1485.

United Nations. Transforming our world: The 2030 Agenda for Sustainable Development. 2015. A/RES/70/1.




DOI: https://doi.org/10.30906/1999-5636-2020-9-40-46

Ссылки

  • На текущий момент ссылки отсутствуют.


Наши партнеры:



    

 

Подписаться на наши издания Вы можете через почтовые каталоги агентства «Роспечать» и Объединенный каталог «Пресса России»а также на сайтах агентств «УП Урал Пресс», «Информнаука»«Прессинформ» и «Профиздат».

© Издательский дом «Фолиум», 1998–2023